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Abstract
The ground state properties of the one-dimensional Kondo lattice model are
studied at conduction electron quarter-filling (n = 1/2) in a special parameter
case. The charge and spin gaps are calculated. A phase diagram is given;
the local spin order in each phase is presented. Two first-order transitions are
found.

Recently, the Kondo lattice model (KLM) has attracted increasing attention [1]. In this model,
the conduction electron propagates by hopping to neighbouring sites and interacts with the
local magnetic moment at every site. The interplay between the Kondo screening and the
effective interaction among localized spins may result in a nonmagnetic Kondo singlet phase
or an antiferromagnetic long range order phase.

The one-dimensional (1D) KLM has a very complicated phase diagram [1], depending on
the band filling n of the conduction electron density and the strength of the Kondo interaction
between the conduction electrons and the local spin. At half-filling (n = 1), the ground
state is a spin-liquid insulator [2] for any Kondo coupling. When the conduction electron
density is below half-filling (n � 1), things are quite different. The band filling n will play
a very important role for the phase diagram. For incommensurate band filling, there is a
phase transition [3] from a paramagnetic to a ferromagnetic state as the Kondo interaction
increases. However, for commensurate band filling, recent works [4–7] found many new
results, especially for local spin order (LSO). In a numerical calculation work [6] based on the
method of the density matrix renormalization group, a spin dimerization phase for the localized
spins was found in 1D KLM at quarter-filling (n = 1/2). This phase may provide a possible
mechanism for explaining the dimerization transition observed in the quasi-one-dimensional
organic compound (Per)2M(mnt)2 (M = Pt, Pd) [8]. A very recent numerical work [7] found,
besides the spin dimerized phase, other magnetic phases: the island phase and the spiral-like
phase. The island phase has quasi-long range order (QLRO) and zero spin gap. The spin
dimerized and island phases may belong to the same universal class. These new numerical
works may imply that the KLM is far from fully understood.
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In view of the above considerations, we would like to study the ground state properties
of the 1D KLM by a bosonization technique. This letter is organized as follows. First, we
give the bosonization form of the 1D KLM. Then, under a special parameter condition, the
bosonized KLM is treated by a variational method on the basis of a trial ground state in the
form of a Gaussian wavefunctional [9]. We calculate the ground state energy, using which the
ground state properties of the KLM are investigated at quarter-filling (n = 1/2). Two phase
transitions are found. The spin and charge gaps are calculated for the whole parameter space.
Finally, the LSO in each phase is given.

The 1D KLM can be written as

H = −t
∑

j,σ

(
C†

j,σC j+1,σ + h.c.
)

+ J
∑

j

S j · τ j , (1)

where t is the conduction electron hopping strength, the operator C†
j,σ creates an electron

at site j with spin σ , τ j is a localized spin-1/2 operator, S j = ∑
αβ(C

†
j,ασαβC j,β)/2 is

the spin-density operator of the conduction electron, and σαβ are the Pauli matrices. After
introducing the left- and right-moving electron operator�†

λ,σ (x)with λ = R,L and linearizing
the spectrum around two Fermi points, in the continuum limit, the Hamiltonian (1) is given by

H = H0 + H‖ + H⊥,

H0 = −ivF

∑

σ

∫
dx
[
�

†
R,σ ∂x�R,σ − �

†
L,σ ∂x�L,σ

]
,

H‖ = J‖
∑

j,λ

Sz
j

[
�

†
λ↑(R j )�λ↑(R j )−�

†
λ↓(R j )�λ↓(R j )

]
,

H⊥ = J⊥
∑

j,λ,λ′

[
S+

j�
†
λ↓(R j )�λ′↑(R j ) + h.c.

]
,

(2)

where vF = 2t sin(kFa) is the Fermi velocity (a is the lattice constant) and kF = nπ/2a. The
local spins are located at position R j = ja. H0 is the kinetic energy of the conduction electrons.
J‖ and J⊥ are the longitudinal and transverse parts of the Kondo interaction, respectively. In the
following bosonization process, each of them can be divided into forward-and back-scattering
parts, labelled with ‘f’ and ‘b’. So the Kondo interaction has been divided into four parts: J f

‖ ,
J b
‖ , J f

⊥ and J b
⊥ [10].

The conduction electrons in the boson field can be expressed by the standard bosonization
technique. Here only the outline of the bosonization process is given. Details can be found
in [10, 11]. After introducing the boson fields φσ (x) with the conjugate momentum 	σ(x),
we define 
R(L),σ (x) = [φσ (x) ∓ ∫ x

−∞	σ(y) dy]/2. Then the fermion operators can be

expressed as �R(L),σ = (1/
√

2πa) exp[±i
√

4π
R(L),σ (x)], whereupon the Hamiltonian (2)
may be bosonized. One can rewrite the bosonized Hamiltonian by introducing the spin
and charge fields, φs(x) = [φ↑ − φ↓]/

√
2, φc(x) = [φ↑ + φ↓]/

√
2. After making a

unitary transformation [12], U = exp[−i
√

2π
∑

j τ
z
j

∫ ja
−∞	s(y) dy], we obtain a transformed

Hamiltonian:

H̃ = vF

2

∫
dx
{
[	2

c + (∂xφc)
2] + [	2

s + (∂xφs)
2]
}

+
∑

j

τ x
j

πa

{
J f
⊥(−1) j cos[

√
2πφs( j)]

+ J b
⊥ cos[

√
2πφc( j) + 2kF ja]

}
, (3)

where we have set �J f
‖ = J f

‖ − πvF = 0 and J b
‖ = 0. In the following, we will always work

under this parameter condition. In this way, the operator {τ x
j } can commute with H̃ . So {τ x

j }
are good quantum numbers. Thus we can treat them as constant numbers τ x

j = ±1/2. The
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configuration of {τ x
j } should be properly selected in order to minimize the ground state energy.

As n < 1, J b
⊥ and J f

⊥ may lead to different phases and orders for the conduction electron band
and local spin. The phase diagram of the above Hamiltonian can be roughly understood on the
basis of the competition between J b

⊥ and J f
⊥ in two limits: in the limit J b

⊥ = 0, the charge part
is free and the spin part is gapped. The local spin is antiferromagnetically ordered, because of
the factor (−1) j . In the limit J f

⊥ = 0, the spin part will be gapless and have LRO. The order
of the local spins may be modulated by cos(2kF ja).

Since the Hamiltonian (3) cannot be solved exactly, it can be simulated using the following
exactly solvable reference model [13, 14]:

Href = Hs + Hc,

Hs = vF

2

∫
dx
{
	2

s + (∂xφs)
2 + m2

sφ
2
s

}
,

Hc = vF

2

∫
dx
{
	2

c + (∂xφc)
2 + m2

cφ
2
c

}
,

(4)

where mc and ms are the charge and spin gap, respectively. They will be determined
variationally. The field φc(s) and its canonical counterpart	c(s) can be expanded as

φc(s)(x) =
∑

µ

1√
2εµ,c(s)

uµ,c(s)(x)
[
aµ,c(s) + a†

µ,c(s)

]
,

	c(s)(x) = −i
∑

µ

√
εµ,c(s)

2
uµ,c(s)(x)

[
aµ,c(s) − a†

µ,c(s)

]
.

(5)

With a bilinear form, the Hamiltonian Href can be exactly diagonalized as

Href =
∑

µ,l=c,s

εµ,l(a
†
µ,laµ,l + 1

2 ). (6)

The eigenfunction {uµ,c(s)(x)} and eigenvalue {εµ,c(s)} are obtained from the following
differential equation:

[
− d2

dx2
+ m2

c(s)

]
uµ,c(s)(x) = ε2

µ,c(s)uµ,c(s)(x). (7)

The ground state of Href in equation (6) satisfies the condition

aµ,l |ψ〉 = 1√
2

∫
dx uµ,l(x)

[√
εµ,lφl(x) + i

1√
εµ,l

	l(x)

]
|ψ〉

= 0, for all µ and l. (8)

In the representation of φl(x), 	l(x) = (1/ i)[δ/δφl(x)], the solution is a Gaussian
wavefunctional:

|ψ〉 = N
∏

l=c,s

exp

{
− 1

2

∫ ∫
dx dy

[
(φl(x)− φl,0) · K −1

l (x, y) · (φl(y)− φl,0
)]}

, (9)

where φc(s),0 is a variational parameter that represents the local classical value of the field φc(s).
Without losing generalization, we restrict φc(s),0 to the region of [0, π]. N is the normalization
coefficient. The kernel in wavefunction (9) is defined as

∫
Kl(x, y)K −1

l (x ′, y) dy = δ(x − x ′),

and takes the form

K −1
l (x, y) =

∑

µ

εµ,luµ,l(x)uµ,l(y), (10)
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whose inverse Kl(x, y) can be expressed as

Kl(x, y) =
∑

µ

uµ,l(x)uµ,l(y)

εµ,l
. (11)

From the wavefunction of equation (9), one can obtain the density of the ground state energy
for Hamiltonian (3):

Eg(φc,0,mc, φs,0,ms) = 〈ψ(φc,0,mc, φs,0,ms) |H |ψ(φc,0,mc, φs,0,ms)
〉 = E1 + E2, (12)

where

E1 = vF

8πa

[√(
1 + m2

ca2
)

+
√(

1 + m2
s a2
)]
, (13)

E2 = 1

N

∑

j

τ x
j Ji , (14)

and

Ji = αs(−1) j cos
(
βsφs,0

)
+ αc cos

(
βcφc,0 + 2kF ja

)
, (15)

αs = J f
⊥
πa

exp

(
−β

2
s Ks

4

)
, (16)

αc = J b
⊥
πa

exp

(
−β

2
c Kc

4

)
, (17)

Kc(s) = 1

2π
ln




1 +
√

1 + m2
c(s)a

2

mc(s)a



 . (18)

In the above equations, βc = βs = √
2π . N is the total number of lattice sites. From

the ground state energy (12), one can investigate the ground state properties of the KLM.
The four parameters φc,0,mc, φs,0,ms and the configuration of local spins may be obtained by
minimizing the ground state energy. The classical pathφc(s),0 can obtained from ∂Eg/∂φc(s),0 =
0, which may result in βsφs,0 = 0. And βcφc,0 can be obtained from the following calculation.
As n = 1/2 (2kF ja = jπ/2), one can find that

J j = (−1)mod( j/4)αs + αc cos(βcφc,0 + jπ/2). (19)

For a given set of parameters {mc,ms}, min(τ x
j J j ) = −|J j |/2, from selecting

τ x
j = − ∣∣J j

∣∣ /
(
2J j

)
. (20)

This kind of selection will ensure that τ x
j J j is minimal, that is to say, the total ground state

energy is minimal. By carefully analysing equation (19), one can find that βcφc,0 has three
possible values 0, π/4 and π/2. The ground state energy can be written as

Eg =






E1 − αs/2, αc < αs

E1 − (αs + αc) /4, (
√

2 − 1)αc < αs < αc

E1 − √
2αc/4, αs < (

√
2 − 1)αc.

(21)

The pattern of local spin should be obtained from the sign of J j . Up to now, one can get the
values of mc and ms by minimizing the ground state energy (21).

In figure 1, we plot the ground state energy dependence on the variational parameters mc

and mc for J f
⊥ = 1.0, J b

⊥ = 0.75. From this figure, one can find that there are three minimal
points in the parameter space. mc and mc should be selected for the minimal point with lowest
energy. As αc < αs, the second part of (21) is equal to −αs/2. This means that the interaction
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Figure 1. The ground state energy dependence of mc and ms for J f⊥ = 1.0, J b⊥ = 0.75.

of the charge part disappears. So the charge part is free. As (
√

2−1)αc < αs < αc, the second
part of (21) is −(αs + αc)/4, which will result in spin and charge gaps. As αs < (

√
2 − 1)αc,

the interaction of the spin part disappears and the spin excitations are gapless. For a pair (J f
⊥,

J b
⊥), the energy of Eg can be divided into three regions in the space of (mc,ms) by the lines
αs = αc and (

√
2 − 1)αc = αs. In each region, there is a minimal point for the ground state

energy. One can easily find that these three points are (m1,c, m1,s), (m2,c, m2,s) and (m3,c, m3,s),
for which

m1,c = 0, (22)

m2
1,s = J f

⊥β
2
s

2πvF



 m1,s

1 +
√

1 + m2
1,s




β2

s /8π

, (23)

m2
2,c = J b

⊥β2
c

4πvF



 m2,c

1 +
√

1 + m2
2,c




β2

c /8π

, (24)

m2
2,s = J f

⊥β2
s

4πvF



 m2,s

1 +
√

1 + m2
2,s




β2

s /8π

, (25)

and

m2
3,c =

√
2J b

⊥β
2
c

4πvF



 m3,c

1 +
√

1 + m2
3,c




β2

c /8π

, (26)

m3,s = 0. (27)

In our calculation, one should carefully compare the energy of these three points and select
the points with lowest energy as the true charge and spin gaps.
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Figure 2. The charge gap dependence of J f⊥ and J b⊥.
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Figure 3. The spin gap dependence of J f⊥ and J b⊥.

In figures 2 and 3, we give the charge and spin gap dependence on J f
⊥ and J b

⊥. From these
two figures, one can find that, as J b

⊥ is small enough, the charge gap (shown in figure 2) has
zero value and the spin gap (shown in figure 3) has a finite value for a given J f

⊥. As J b
⊥ is

increased to a critical value, the charge gap mc will jump to a finite value. At the same time,
the spin gap will jump down. With further increase of J b

⊥, the charge gap will jump to another
greater value and the spin gap will be closed. These phenomena indicate that there occur two
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Figure 5. The static local spin configuration: (a) the local spin order in phase I, (b) the local spin
order in phase II and (c) the local spin order in phase III.

phase transitions. Combining the results presented in figure 1, one can conclude that these
transitions are first order.

A phase diagram is presented in figure 4. In this figure, the parameter space of (J f
⊥, J b

⊥)
can be divided into three regions. In region I, mc = 0, ms 
= 0; this means that it is a metal
phase without QLRO in the spin part. In region II, the values of mc and ms are all nonzero;
this is an insulating phase without QLRO. In region III, mc 
= 0, ms = 0; in this phase the spin
excitation is free and has a QLRO.

Since the values of mc and ms can be calculated, via (20) we can give LSO of each
phase, which is shown in figure 5. For the metal phase I, the LSO is shown in figure 5(a).
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The local spins are arranged antiferromagnetically: τ x
j = −(−1) j . This is just like the classical

Néel order. For the insulating phase II, the LSO is given in figure 5(b). This kind of LSO
can be viewed as a special kind of island phase with a spin gap. The LSO in phase III is
given in figure 5(c). This phase without a spin gap is the true spin island phase [7] or spin
dimerization [6] phase. These three phases can be understood on the basis of the competition
of interactions in (3) as follows: in the metal phase I, J f

⊥ favours a staggered local magnetic
moment, which can be treated as a staggered external magnetic field. The effective field may
result in a spin gap and has no effect on the charge part. So there is only a spin gap, whereas
the charge part is gapless. In this phase, only J f

⊥ contributes to the ground state. For the
insulating phase II, the effects of J b

⊥ will appear. The order of the local spin will change to
make the interaction of the charge part become nonzero. Thus, the charge gap will be opened.
Comparing with the staggered local spin order in metal phase, one may find that the LSO
in this insulating phase can be treated as a small departure from the staggered order. So the
spin gap will be reduced. In the island phase III, the effects of J f

⊥ will totally disappear. The
remainder of the interaction is J b

⊥, which will result in a charge gap and close the spin gap.
The LSO is modulated by cos(βcφc,0 + 2kF ja), which reflects the conduction electron band
filling. So the QLRO in this island phase is the contribution of J b

⊥. The phase evolution from
I to III arises from the competition of J f

⊥ and J b
⊥. Phase II can be treated as a mixture of or

phase intermediate between I and III.
In conclusion, we study the 1D Kondo lattice model in a special parameter case by the

bosonization technique. It is confirmed that there does indeed exist an island phase with
QLRO. In addition, we find that there may exist two other types of LSO. With changing model
parameter, there are two first-order transitions. Although our work is restricted to a special
parameter case, we argue that the local spin ordered ground state may still exist in the 1D
KLM for the general case. For band quarter-filling (n = 1/2), there may exist yet other types
of LSO.
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